Bài tập 25.5 trang 60 SBT Vật lý 10

Lý thuyết Bài tập
Câu hỏi:

Bài tập 25.5 trang 60 SBT Vật lý 10

Một vật nặng bắt đầu trượt từ đỉnh xuống chân một mặt phẳng nghiêng 30° so với mặt phẳng ngang. Cho biết mặt phẳng nghiêng dài 10 m và có hệ số ma sát là 0,20. Lấy g = 10 m/s2. Xác định vận tốc của vật khi nó trượt đến chân mặt phẳng nghiêng này.

- Áp dụng công thức về độ biến thiên động năng:

\(\frac{{m{v^2}}}{2} - \frac{{mv_0^2}}{2} = A = Fs\)

Với v0 = 0 và F = Psinα - Fms = mg(sinα - µcosα)

- Từ đó suy ra:

\(v = \sqrt {2sg(sin\alpha - \mu \cos \alpha )} \)

- Thay số, ta tìm được vận tốc của vật ở chân mặt phẳng nghiêng:

\(v \approx \sqrt {2.10.10(sin{{30}^0} - 0,2cos{{30}^0})} \approx 8,4(m/s)\)

 

-- Mod Vật Lý 10

Copyright © 2021 HOCTAP247