A. 1
B. \(-3.\)
C. 3
D. \(-1.\)
B
Tập xác định: \(D=\mathbb{R}.\)
Ta có: \(y'=3{{x}^{2}}-6x+m\)
Hàm số đã cho có cực trị \(\Leftrightarrow y'=0\) có hai nghiệm phân biệt.
Hay: \(\Delta '=9-3m>0\Leftrightarrow m<3.\left( 1 \right)\)
Khi đó y' = 0 có hai nghiệm \({x_1};{x_2}\) thỏa mãn: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2\\ {x_1}.{x_2} = \frac{m}{3} \end{array} \right.\)
Theo bài ra: \(x_{1}^{2}+x_{2}^{2}=6\Leftrightarrow {{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-2{{x}_{1}}{{x}_{2}}=6\Leftrightarrow {{2}^{2}}-\frac{2m}{3}=6\Leftrightarrow m=-3\) (thỏa mãn (1)).
Vậy với \(m=-3\) thỏa mãn yêu cầu bài toán.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247