A. \(m>4.\)
B. \(3<m<4.\)
C. \(m\ge 4.\)
D. \(3\le m\le 4.\)
B
Điều kiện: \(\left\{ \begin{array}{l} x \ge 1\\ {x^2} - 4x + m \ge 0 \end{array} \right..\)
Để đồ thị hàm số có hai đường tiệm cận đứng thì phương trình \({{x}^{2}}-4x+m=0\) phải có hai nghiệm phân biệt lớn hơn 1.
Ta có: \({x^2} - 4x + m = 0 \Leftrightarrow {\left( {x - 2} \right)^2} = 4 - m \Leftrightarrow \left\{ \begin{array}{l} m < 4\\ x = 2 \pm \sqrt {4 - m} \end{array} \right.\)
Để thỏa mãn yêu cầu đề ra thì \(2-\sqrt{4-m}>1\Leftrightarrow 1>\sqrt{4-m}\Leftrightarrow 1>4-m\Leftrightarrow m>3.\)
Vậy \(3<m<4.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247