Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích bằng \(V.\) Gọi \(G\) là trọng tâm tam giác \(A'BC\) và \(I'\) là trung điểm của \(A'D'.\) Thể tích khối tứ diện \(GB'C'I'\) bằng:

Câu hỏi :

Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích bằng \(V.\) Gọi \(G\) là trọng tâm tam giác \(A'BC\) và \(I'\) là trung điểm của \(A'D'.\) Thể tích khối tứ diện \(GB'C'I'\) bằng:

A. \(\frac{V}{6}.\)

B. \(\frac{2V}{5}.\)

C. \(\frac{V}{9}.\)

D. \(\frac{V}{12}.\)

* Đáp án

C

* Hướng dẫn giải

Gọi I là trung điểm đoạn BC

Ta có \({{S}_{\Delta B'C'I'}}={{S}_{\Delta A'B'C'}}=\frac{1}{2}{{S}_{A'B'C'D'}}=\frac{1}{2}B\)

\(\frac{d\left( G;\left( A'B'C'D' \right) \right)}{d\left( I;\left( A'B'C'D' \right) \right)}=\frac{GA'}{IA'}=\frac{2}{3}\Rightarrow d\left( G;\left( A'B'C'D' \right) \right)=\frac{2}{3}d\left( I;\left( A'B'C'D' \right) \right)=\frac{2}{3}h\)

\(\Rightarrow {{V}_{GB'C'I'}}=\frac{1}{3}d\left( G;\left( A'B'C'D' \right) \right).{{S}_{\Delta B'C'I'}}=\frac{1}{3}.\frac{2}{3}h.\frac{1}{2}B=\frac{1}{9}B.h\)

\(\Rightarrow {{V}_{GB'C'I'}}=\frac{1}{9}V\)

Copyright © 2021 HOCTAP247