Lập các số tự nhiên có 7 chữ số từ các chữ số 1, 2, 3, 4. Tính xác suất để số lập được thỏa mãn: các chữ số 1, 2, 3 có mặt hai lần, chữ số 4 có mặt 1 lần đồng thời các chữ số lẻ đề...

Câu hỏi :

Lập các số tự nhiên có 7 chữ số từ các chữ số 1, 2, 3, 4. Tính xác suất để số lập được thỏa mãn: các chữ số 1, 2, 3 có mặt hai lần, chữ số 4 có mặt 1 lần đồng thời các chữ số lẻ đều nằm ở các vị trí lẻ (tính từ trái qua phải).

A. \(\frac{9}{8192}.\)

B. \(\frac{9}{4096}.\)

C. \(\frac{3}{4096}.\)

D. \(\frac{3}{2048}.\)

* Đáp án

A

* Hướng dẫn giải

Gọi số có 7 chữ số được tạo ra từ các chữ số 1, 2, 3, 4 là \(\overline{{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}{{a}_{5}}{{a}_{6}}{{a}_{7}}}.\)

Số phần tử của không gian mẫu: \(n\left( \Omega  \right)=4.4.4.4.4.4.4={{2}^{14}}.\)

Gọi \)A\) là biến cố: “Số lập được có 7 chữ số thỏa mãn: các chữ số 1, 2, 3 có mặt hai lần, chữ số 4 có mặt một lần đồng thời các chữ số lẻ đều nằm ở các vị trí lẻ (tính từ trái sang phải)”.

Giả sử số có 7 chữ số thỏa mãn bài toán được đặt vào các vị trí từ trái sang phải được đánh số vị trí như hình vẽ.

1

2

3

4

5

6

7

Bước 1. Xếp các số lẻ vào các vị trí lẻ:

Các vị trí 1, 3, 5, 7 gồm các chữ số lẻ: 1,3 (mỗi chữ số ở hai trong 4 vị trí lẻ).

Xét chữ số 1 được đặt vào 2 trong 4 vị trí lẻ có cách \(C_{4}^{2}\) xếp, hai chữ số 3 xếp vào hai vị trí lẻ còn lại có 1 cách xếp.

Bước 2: Xếp các số chữ số chẵn vào các vị trí chẵn.

Các vị trí chẵn 2, 4, 6 xếp vào đó hai chữ số 2 và một chữ số 4

Xếp hai chữ số 2 vào 2 trong 3 vị trí chẵn có \(C_{4}^{2}\) cách xếp, còn lại 1 vị trí chẵn xếp cho chữ số 4 có 1 cách xếp.

Do đó số phần tử của biến cố A là: \(n\left( A \right)=C_{4}^{2}.C_{4}^{2}=18\)

\(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega  \right)}=\frac{18}{{{2}^{14}}}=\frac{9}{8192}\)

Copyright © 2021 HOCTAP247