Đồ thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?

Câu hỏi :

Đồ thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?

A. \(y=2\cdot \)

B. \(y=-\frac{1}{2}\cdot \)

C. \(y=-2\cdot \)

D. \(y=\frac{1}{2}\cdot \)

* Đáp án

D

* Hướng dẫn giải

Ta có:

\(\underset{x\to +\infty }{\mathop{\lim }}\,\left( \frac{x+1}{2x+4} \right)=\underset{x\to +\infty }{\mathop{\lim }}\,\left( \frac{x\left( 1+\frac{1}{x} \right)}{x\left( 2+\frac{4}{x} \right)} \right)=\underset{x\to +\infty }{\mathop{\lim }}\,\left( \frac{\left( 1+\frac{1}{x} \right)}{\left( 2+\frac{4}{x} \right)} \right)=\frac{1}{2}\)

\(\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{x+1}{2x+4} \right)=\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{x\left( 1+\frac{1}{x} \right)}{x\left( 2+\frac{4}{x} \right)} \right)=\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{\left( 1+\frac{1}{x} \right)}{\left( 2+\frac{4}{x} \right)} \right)=\frac{1}{2}\)

Vậy đề thị hàm số \(y=\frac{x+1}{2x+4}\) có tiệm cận ngang là đường thẳng \(y=\frac{1}{2}.\)

Copyright © 2021 HOCTAP247