Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB>AD. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(M,\,N\) lần lượt là trung điểm của AB và BC. Xét cá...

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB>AD. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(M,\,N\) lần lượt là trung điểm của AB và BC. Xét các mệnh đề sau:(i). \(SM\bot \left( ABCD \right)\).

A. 1

B. 0

C. 3

D. 2

* Đáp án

D

* Hướng dẫn giải

Do \(\left. \begin{array}{l} SM \bot AB\\ SM \subset \left( {SAB} \right)\\ \left( {SAB} \right) \bot \left( {ABCD} \right)\\ \left( {SAB} \right) \cap \left( {ABCD} \right) = AB \end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\) nên \(\left( i \right)\) là mệnh đề đúng.

\(\left. \begin{array}{l} BC \bot AB\\ BC \bot SM \end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\) nên \(\left( ii \right)\) là mệnh đề đúng.

Ta có AN không vuông góc với DM nên \(\left( iii \right)\) là mệnh đề sai.

Copyright © 2021 HOCTAP247