A. 0
B. 1
C. 3
D. 2
D
Ta có \(2\sin x = 1 \Leftrightarrow \sin x = \frac{1}{2} = \sin \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{6} + k2\pi \\ x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\left( {k \in Z} \right).\)
Do \(0\le x\le \pi \) nên \(0\le \frac{\pi }{6}+k2\pi \le \pi \Leftrightarrow -\frac{1}{12}\le k\le \frac{5}{12}\Rightarrow k=0\Rightarrow x=\frac{\pi }{6}.\)
Và \(0\le \frac{5\pi }{6}+k2\pi \le \pi \Leftrightarrow -\frac{5}{12}\le k\le \frac{1}{12}\Rightarrow k=0\Rightarrow x=\frac{5\pi }{6}.\)
Vậy phương trình có hai nghiệm trên \(\left[ 0;\pi \right].\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247