Biết rằng hàm số \(f\left( x \right)\) có đồ thị được cho như hình vẽ bên. Tìm số điểm cực trị của hàm số \(y=f\left[ f\left( x \right) \right]\).

Câu hỏi :

Biết rằng hàm số \(f\left( x \right)\) có đồ thị được cho như hình vẽ bên. Tìm số điểm cực trị của hàm số \(y=f\left[ f\left( x \right) \right]\).

A. 5

B. 3

C. 4

D. 6

* Đáp án

C

* Hướng dẫn giải

Xét hàm số \(y=f\left[ f\left( x \right) \right]\), \({y}'={f}'\left( x \right).{f}'\left[ f\left( x \right) \right]\);

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} f'\left( x \right) = 0\\ f'\left[ {f\left( x \right)} \right] = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2\\ f\left( x \right) = 0\\ f\left( x \right) = 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2\\ x = a \in \left( {2; + \infty } \right)\\ x = b \in \left( {a; + \infty } \right) \end{array} \right.\)

Với \(x>b\), ta có \(f\left( x \right)>2\)\(\Rightarrow {f}'\left[ f\left( x \right) \right]>0\)

Với a<x<b, ta có \(0<f\left( x \right)<2\) \(\Rightarrow {f}'\left[ f\left( x \right) \right]<0\)

Với 0<x<a hoặc \(x<0\), ta có \(f\left( x \right)<0\) \(\Rightarrow {f}'\left[ f\left( x \right) \right]>0\)

BBT:

Dựa vào BBT suy ra hàm số \(y=f\left[ f\left( x \right) \right]\) có bốn điểm cực trị.

Copyright © 2021 HOCTAP247