A. 2
B. 0
C. 3
D. 1
B
Điều kiện xác định của phương trình là \(\left\{ \begin{array}{l} {x^2} - 6x + 12 > 0\\ x + 2 > 0\\ m - 5 > 0\\ m - 5 \ne 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x > - 2\\ m > 5\\ m \ne 6 \end{array} \right.\)
Ta có \({{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{\sqrt{m-5}}}\sqrt{x+2}\)\(\Leftrightarrow {{\log }_{m-5}}\left( {{x}^{2}}-6x+12 \right)>{{\log }_{m-5}}\left( x+2 \right)\) (1)
Khi 5<m<6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12<x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10<0\) \(\Leftrightarrow 2<x<5\)
Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( 2;5 \right)\) có chứa đúng 2 giá trị nguyên.
Nhưng tập tham số m không chứa giá trị nguyên.
Khi m>6 thì \(\left( 1 \right)\Leftrightarrow {{x}^{2}}-6x+12>x+2\) \(\Leftrightarrow {{x}^{2}}-7x+10>0\) \(\Leftrightarrow \left[ \begin{align} & x<2 \\ & x>5 \\ \end{align} \right.\)
Do đó, tập nghiệm của \(\left( 1 \right)\) là \(T=\left( -2;2 \right)\cup \left( 5;+\infty\right)\) có chứa nhiều 2 giá trị nguyên.
Kết luận \(S=\varnothing \). Tổng các phần tử của tập S bằng 0.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247