Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.

A. \(\frac{a\sqrt{3}}{3}\).

B. \(\frac{a\sqrt{5}}{5}\).

C. \(\frac{2a\sqrt{3}}{3}\).

D. \(\frac{2a\sqrt{5}}{5}\).

* Đáp án

D

* Hướng dẫn giải

Gọi H là trung điểm AB.

Ta có \(\left( SAB \right)\bot \left( ABCD \right)\) theo giao tuyến AB. Trong \(\left( SAB \right)\) có \(SH\bot AB\) nên \(SH\bot \left( ABCD \right)\).

Kẻ \(HK\ \text{//}\ AD\) \(\left( K\in CD \right)\) \(\Rightarrow HK\bot CD\)

mà \(SH\bot \left( ABCD \right)\Rightarrow CD\bot SH\). Do đó \(CD\bot \left( SHK \right)\).

Suy ra \(\left( SCD \right)\bot \left( SHK \right)\) theo giao tuyến SK.

Trong \(\left( SHK \right)\), kẻ \(HI\bot SK\) thì \(HI\bot \left( SCD \right)\).

Ta có: \(AB\ \text{//}\ \left( SCD \right)\) nên \(d\left( AB,SC \right)=d\left( AB,\left( SCD \right) \right)=d\left( H,\left( SCD \right) \right)=HI\).

Tam giác SAB vuông cân có \(AB=2a\Rightarrow SH=a\)

Tam giác SHK có \(\frac{1}{H{{I}^{2}}}=\frac{1}{S{{H}^{2}}}+\frac{1}{H{{K}^{2}}}\Rightarrow HI=\frac{2\sqrt{5}a}{5}\).

Vậy \(d\left( AB,SC \right)=\frac{2\sqrt{5}a}{5}\).

Copyright © 2021 HOCTAP247