Tìm giá trị lớn nhất (max) và giá trị nhỏ nhất (min) của hàm số \(y=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{3}{2};\,3 \right]\).

Câu hỏi :

Tìm giá trị lớn nhất (max) và giá trị nhỏ nhất (min) của hàm số \(y=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{3}{2};\,3 \right]\).

A. \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\max }}\,y=\frac{10}{3}\), \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\min }}\,y=\frac{13}{6}\).

B. \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\max }}\,y=\frac{10}{3}\), \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\min }}\,y=2\).

C. \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\max }}\,y=\frac{16}{3}\), \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\min }}\,y=2\).

D. \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\max }}\,y=\frac{10}{3}\), \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\min }}\,y=\frac{5}{2}\).

* Đáp án

A

* Hướng dẫn giải

Ta có:

\(y' = 1 - \frac{1}{{{x^2}}}\), \(y'=0\Leftrightarrow \left[ \begin{array}{l} x = - 1 \notin \left[ {\frac{3}{2};\,3} \right]\\ x = 1 \notin \left[ {\frac{3}{2};\,3} \right] \end{array} \right.\).

\(y\left( \frac{3}{2} \right)=\frac{13}{6}\), \(y\left( 3 \right)=\frac{10}{3}\).

Suy ra \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\max }}\,y=\frac{10}{3}\), \(\underset{\left[ \frac{3}{2};\,3 \right]}{\mathop{\min }}\,y=\frac{13}{6}\).

Copyright © 2021 HOCTAP247