Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) tương ứng có phương trình là

Câu hỏi :

Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-3}{x+1}\) tương ứng có phương trình là

A. \(x=2\) và \(y=1\).

B. \(x=-1\) và \(y=2\).

C. \(x=1\) và \(y=-3\).

D. \(x=1\) và \(y=2\).

* Đáp án

B

* Hướng dẫn giải

Ta có: \(\underset{x\to \pm \infty }{\mathop{\lim }}\,y=2\) nên đồ thị hàm số có đường tiệm cận ngang là \(y=2\).

\(\left\{ \begin{align} & \underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,y=-\infty \\ & \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,y=+\infty \\ \end{align} \right.\) nên đồ thị hàm số có đường tiệm cận đứng là \(x=-1\).

Copyright © 2021 HOCTAP247