A. \(m = \frac{1}{2}\)
B. m = 0
C. m = 1
D. \(m = - \frac{1}{2}\)
B
Tập xác định \(D=\mathbb{R}\)
Ta có \(y'=4{{x}^{3}}-4\left( 1-{{m}^{2}} \right)x\Rightarrow y'=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & {{x}^{2}}=1-{{m}^{2}} \\ \end{align} \right.\)
Hàm số đã cho có ba điểm cực trị \(\Leftrightarrow \) phương trình y’ = 0 có ba nghiệm phân biệt \(\Leftrightarrow \) Phương trình \({{x}^{2}}=1-{{m}^{2}}\) có hai nghiệm phân biệt khác 0 \(\Leftrightarrow \left\{ \begin{align} & 1-{{m}^{2}}>0 \\ & 1-{{m}^{2}}\ne 0 \\ \end{align} \right.\Leftrightarrow -1<m<1\)
Khi đó gọi ba điểm cực trị là
\(A\left( 0;1+m \right),\,\,B\left( \sqrt{1-{{m}^{2}}};m+2{{m}^{2}}-{{m}^{4}} \right),\,\,C\left( -\sqrt{1-{{m}^{2}}};m+2{{m}^{2}}-{{m}^{4}} \right)\)
Ta có: \(BC=\left| {{x}_{C}}-{{x}_{B}} \right|=2\sqrt{1-{{m}^{2}}};\,\,d\left( A;BC \right)={{\left( 1-{{m}^{2}} \right)}^{2}}\)
Lại có: \({{S}_{ABC}}=\frac{1}{2}BC.d\left( A,BC \right)={{\left( 1-{{m}^{2}} \right)}^{2}}\sqrt{1-{{m}^{2}}}\le 1\Rightarrow {{S}_{\max }}=1\) khi m = 0
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247