Tìm giá trị thực của tham số m để hàm số liên tục tại x = 1.

Câu hỏi :

Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}},x \ne 1\\ 3x + m,x = 1 \end{array} \right.\) liên tục tại x = 1.

A. m = 0

B. m = 6

C. m = 4

D. m = 2

* Đáp án

A

* Hướng dẫn giải

Ta có

\(\begin{array}{l} f\left( 1 \right) = m + 3\\ \mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + 2} \right) = 3 \end{array}\)

Hàm số f(x) liên tục tại x = 1 khi: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right) \Leftrightarrow m + 3 = 3 \Leftrightarrow m = 0\)

Copyright © 2021 HOCTAP247