Chứng minh rằng :
a) Hợp thành của hai phép đối xứng qua hai mặt phẳng song song (P) và (Q) là một phép tịnh tiến ;
b) Hợp thành của hai phép đối xứng qua hai mặt phẳng (P) và (Q) vuông góc với nhau là một phép đối xứng qua đường thẳng.
a)
.jpg)
Lấy hai điểm A và B lần lượt nằm trên (P) và (Q) sao cho AB ⊥ (P). Với một điểm M bất kì, ta gọi M1 là điểm đối xứng với M qua mp(P) và M′ là điểm đối xứng với M1 qua mp(Q)
Như vậy M′ là ảnh của M qua phép hợp thành của phép đối xứng qua mp(P)và phép đối xứng qua mp(Q).
Gọi H và K lần lượt là trung điểm của MM1 và M1M′ thì ta có:
\(\begin{array}{l}
\overrightarrow {MM'} = \overrightarrow {M{M_1}} + \overrightarrow {{M_1}M'} \\
= 2\left( {\overrightarrow {H{M_1}} + \overrightarrow {{M_1}K} } \right) = 2\overrightarrow {HK} = 2\overrightarrow {AB}
\end{array}\)
Như vậy phép hợp thành nói trên chính là phép tịnh tiến theo vectơ \(2\overrightarrow {AB} \)
b)
.jpg)
Giả sử (P) ⊥ (Q) và d = (P) ∩ (Q)
Gọi M1 là điểm đối xứng của M qua (P) và H là trung điêm của MM1
Gọi M′ là điểm đối xứng của M1 qua (Q) và K là trung điểm của M1M′
Gọi O là giao điểm của (MM1M′) với d
Ta có (MM1M′) ⊥ (P); (MM1M′) ⊥ (Q) ⇒ (MM1M′) ⊥ d
Ta có OHM1K là hình chữ nhật và
\(\begin{array}{*{20}{l}}
{\overrightarrow {OM} + \overrightarrow {OM'} = \overrightarrow {OH} + \overrightarrow {HM} + \overrightarrow {OK} + \overrightarrow {KM'} }\\
\begin{array}{l}
= \left( {\overrightarrow {OH} + \overrightarrow {OK} } \right) + \left( {\overrightarrow {{M_1}H} + \overrightarrow {{M_1}K} } \right)\\
= \overrightarrow {O{M_1}} + \overrightarrow {{M_1}O} = \vec 0
\end{array}
\end{array}\)
Suy ra O là trung điểm của MM′, mặt khác MM′ ⊥ d. Vậy phép hợp thành của phép đối xứng qua mp(P) và phép đối xứng qua mp(Q) với (P) ⊥ (Q) là phép đối xứng qua đường thẳng d.
-- Mod Toán 12
Copyright © 2021 HOCTAP247