Tứ giác ABCD có AB = CD. Gọi M, N theo thứ tự là trung điểm của BC, AD

Câu hỏi :

Tứ giác ABCD có AB = CD. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, K theo thứ tự là trung điểm của AC, BD. Chọn câu đúng nhất.

A. IK vuông góc với MN

B. MN là phân giác IMK^

C. Cả A, B đều đúng

D. Cả A, B đều sai

* Đáp án

* Hướng dẫn giải

Từ giả thiết ta có: KM, IM, IN, KN lần lượt là các đường trung bình của các tam giác BCD, CAB, ADC, DBA (định nghĩa đường trung bình).

Đặt BA = CD = 2a.

Áp dụng định lý đường trung bình và giả thiết vào bốn tam giác trên ta được:

MK = 12CD = a; IM = 12AB = a; NI = 12CD = a; KN = 12BA = a

Suy ra MK = KN = NI = IM.

Tứ giác KMIN có bốn cạnh bằng nhau nên là hình thoi.

Áp dụng tính chất về đường chéo vào hình thoi KMIN ta được: MN ⊥ KI; MN là đường phân giác KMI^.

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Hình thoi có đáp án (Vận dụng) !!

Số câu hỏi: 6

Copyright © 2021 HOCTAP247