Một hình nón đỉnh S có bán kính đáy bằng 2 căn 3 , góc ở đỉnh là 120 độ

Câu hỏi :

Một hình nón đỉnh S có bán kính đáy bằng 2a3, góc ở đỉnh là 120°. Thiết diện qua đỉnh của hình nón là một tam giác. Diện tích lớn nhất Smax của thiết diện đó là bao nhiêu?

A. Smax=8a2

B. Smax=4a22

C. Smax=4a2

D. Smax=16a2

* Đáp án

* Hướng dẫn giải

Giả sử O là tâm đáy và AB là một đường kính của đường tròn đáy hình nón.

Thiết diện qua đỉnh của hình nón là tam giác can SAM. Theo giả thiết hình nón có bán kính đáy

nên 

Xét tam giác SOA vuông tại O, ta có 

Diện tích thiết diện là

Do  nên  lớn nhất khi và chỉ khi  hay khi tam giác ASM vuông cân đỉnh S (vì  nên tồn tại tam giác ASM thỏa mãn)

Vậy diện tích thiết diện lớn nhất là:  (đvdt)

Đáp án cần chọn là: A

Copyright © 2021 HOCTAP247