Biết \(y = f\left( x \right)\) là hàm số lẻ, xác định, liên tục trên \(\left[ { – 2;2} \right]\) và \(\int_{ – 2}^0 {f\left( x \right){\rm{d}}x} = 4\). Tính \(\int_0^2 {f\left( x \...

Câu hỏi :

Biết \(y = f\left( x \right)\) là hàm số lẻ, xác định, liên tục trên \(\left[ { – 2;2} \right]\) và \(\int_{ – 2}^0 {f\left( x \right){\rm{d}}x} = 4\). Tính \(\int_0^2 {f\left( x \right){\rm{d}}x} \)

A. 4

B. 0

C. 2

D. -4

* Đáp án

D

* Hướng dẫn giải

Vì \(y = f\left( x \right)\) là hàm số lẻ,xác định,liên tục trên \(\left[ { – 2;2} \right]\) nên \(\int_{ – 2}^2 {f\left( x \right){\rm{d}}x} = 0 \Leftrightarrow \int_{ – 2}^0 {f\left( x \right){\rm{d}}x} + \int_0^2 {f\left( x \right){\rm{d}}x} = 0 \Leftrightarrow \int_0^2 {f\left( x \right){\rm{d}}x} = – \int_{ – 2}^0 {f\left( x \right){\rm{d}}x} = – 4\)

Copyright © 2021 HOCTAP247