A. \(\frac{384}{8!}\).
B. \(\frac{192}{8!}\).
C. \(\frac{4!.4!}{8!}\).
D. \(\frac{C_{8}^{2}.C_{6}^{2}.C_{2}^{2}}{8!}\).
B
\(A\) là tập hợp các số tự nhiên có 8 chữ số đôi một khác nhau từ \(x=\left\{ 1;2;3;...;8 \right\}\) nên \(A\) có số phần tử là 8! (số).
Giả sử lấy được từ tập \(A\) số có dạng \(\overline{{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}{{a}_{5}}{{a}_{6}}{{a}_{7}}{{a}_{8}}}\) chia hết cho 2222 (với \({{a}_{i}}\in X,i=\overline{1,8}).\)
Vì 2222 = 2.11.101 (2; 11; 101 là các số đôi một nguyên tố cùng nhau) nên \(\overline{{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}{{a}_{5}}{{a}_{6}}{{a}_{7}}{{a}_{8}}}\) là số chữ đồng thời chia hết cho 11 và 101.
Ta có: \(\overline{{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}{{a}_{5}}{{a}_{6}}{{a}_{7}}{{a}_{8}}}\vdots 11\Rightarrow \left[ \left( {{a}_{1}}+{{a}_{3}}+{{a}_{5}}+{{a}_{7}} \right)-\left( {{a}_{2}}+{{a}_{4}}+{{a}_{6}}+{{a}_{8}} \right) \right]\vdots 11.\)
Mà \(\left( {{a}_{1}}+{{a}_{3}}+{{a}_{5}}+{{a}_{7}} \right)+\left( {{a}_{2}}+{{a}_{4}}+{{a}_{6}}+{{a}_{8}} \right)=1+2+...+8=36,{{a}_{i}}\in X,i=\overline{1,8}.\)
Suy ra \({{a}_{1}}+{{a}_{3}}+{{a}_{5}}+{{a}_{7}}={{a}_{2}}+{{a}_{4}}+{{a}_{6}}+{{a}_{8}}=18.\)
Lại có: \(\overline{{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}{{a}_{5}}{{a}_{6}}{{a}_{7}}{{a}_{8}}}\vdots 101\Rightarrow {{a}_{1}}+{{a}_{5}}={{a}_{3}}+{{a}_{7}}={{a}_{2}}+{{a}_{6}}={{a}_{4}}+{{a}_{8}}=9.\)
Nhận thấy các cặp chữ số có tổng bằng 9 lấy được từ \(x\) là: \(\left\{ 1;8 \right\};\left\{ 2;7 \right\};\left\{ 3;6 \right\};\left\{ 4;5 \right\}.\)
Khi đó để lập được một số có dạng \(\overline{{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}{{a}_{5}}{{a}_{6}}{{a}_{7}}{{a}_{8}}}\) chia hết cho 2222, ta thực hiện liên tiếp các công đoạn sau:
+ Chọn 1 trong 4 cặp chữ số có tổng bằng 9: có 4 cách.
+ Xếp chữ số chẵn vào vị trí \({{a}_{8}}\) và chữ số lẻ vào vị trí \({{a}_{4}}:\) có 1 cách.
+ Chọn 1 trong 3 cặp chữ số có tổng bằng 9 còn lại: có 3 cách.
+ Xếp 2 chữ số trên vào vị trí \({{a}_{1}},{{a}_{5}}:\) có 2 cách.
+ Chọn 1 trong 2 cặp chữ số có tổng bằng 9 còn lại: có 2 cách.
+ Xếp 2 chữ số trên vào vị trí \({{a}_{2}},{{a}_{6}}:\) có 2 cách.
+ Cuối cùng xếp 2 chữ số của cặp còn lại vào vị trí \({{a}_{3}},{{a}_{7}}:\) có 2 cách.
Như vậy số các số cần tìm là \(4.1.3.2.2.2.2=192\) số.
Xét phép thử: “Lấy ngẫu nhiên một số từ \(A\)”.
Khi đó số phần tử của không gian mẫu là: \(n\left( \Omega \right)=8!.\)
Biến cố B. “Số lấy được chia hết cho 2222” \(\Rightarrow n\left( B \right)=192.\)
Vậy xác suất để số lấy được chia hết cho 2222 là:\(P\left( A \right)=\frac{192}{8!}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247