A. \(\frac{{{a}^{2}}b}{8}\).
B. \(\frac{a{{b}^{2}}}{8}\).
C. \(\frac{4{{a}^{2}}b}{27}\).
D. \(\frac{4a{{b}^{2}}}{27}\).
C
Gọi giao điểm của BM với AD là J, giao điểm của AM với BC là I
Gọi độ dài MN là x, độ dài MP là y.
Ta có: \(\left\{ \begin{array}{l} \frac{{MN}}{{SA}} = \frac{{IM}}{{IA}}\\ \frac{{MP}}{{SB}} = \frac{{JM}}{{JB}} = \frac{{AM}}{{AI}} \end{array} \right. = > \frac{x}{a} + \frac{y}{b} = 1\)
\(=>P=(\frac{x}{2a}.\frac{x}{2a}.\frac{y}{b}).\frac{4{{a}^{2}}}{b}\le \frac{{{(\frac{x}{2a}+\frac{y}{2a}+\frac{y}{b})}^{3}}}{{{3}^{3}}}\frac{4{{a}^{2}}}{b}=\frac{1}{27}.\frac{4{{a}^{2}}}{b}=\frac{4{{a}^{2}}b}{27}\)(BĐT Cauchy)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247