Cho hình chóp \(S.ABCD\) có đáy là hình vuông, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) là trung điểm của \(SA\), \(SB\). Mặt phẳng \(MNCD\) chia hình chóp đã cho thành...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) là trung điểm của \(SA\), \(SB\). Mặt phẳng \(MNCD\) chia hình chóp đã cho thành hai phần. tỉ số thể tích hai phần \(S.MNCD\) và \(MNABCD\) là

A. 1

B. \(\frac{4}{5}\).

C. \(\frac{3}{4}\).

D. \(\frac{3}{5}\).

* Đáp án

D

* Hướng dẫn giải

Ta có \({{V}_{S.MNCD}}={{V}_{S.MCD}}+{{V}_{S.MNC}}\)

+ \(\frac{{{V}_{S.MCD}}}{{{V}_{S.ACD}}}=\frac{SM}{SA}.\frac{SC}{SC}.\frac{SD}{SD}=\frac{1}{2}\Rightarrow {{V}_{S.MCD}}=\frac{1}{2}{{V}_{S.ACD}}=\frac{1}{4}{{V}_{S.ABCD}}.\)

+ \(\frac{{{V}_{S.MNC}}}{{{V}_{S.ABC}}}=\frac{SM}{SA}.\frac{SN}{SB}.\frac{SC}{SC}=\frac{1}{4}\Rightarrow {{V}_{S.MNC}}=\frac{1}{4}{{V}_{S.ABC}}=\frac{1}{8}{{V}_{S.ABCD}}.\)

\(\Rightarrow {{V}_{S.MNCD}}={{V}_{S.MCD}}+{{V}_{S.MNC}}=\frac{1}{4}{{V}_{S.ABCD}}+\frac{1}{8}{{V}_{S.ABCD}}=\frac{3}{8}{{V}_{S.ABCD}}.\)

\(\Rightarrow {{V}_{MNABCD}}={{V}_{S.ABCD}}-{{V}_{S.MNCD}}={{V}_{S.ABCD}}-\frac{3}{8}{{V}_{S.ABCD}}=\frac{5}{8}{{V}_{S.ABCD}}.\)

Do đó \(\frac{{{V}_{S.MNCD}}}{{{V}_{MNABCD}}}=\frac{\frac{3}{8}{{V}_{S.ABCD}}}{\frac{5}{8}{{V}_{S.ABCD}}}=\frac{3}{5}.\)

Copyright © 2021 HOCTAP247