A. 9
B. 8
C. 5
D. 12
A
Xét phương trình: \({{2021}^{{{x}^{3}}-{{a}^{3\log \left( x+1 \right)}}}}=\frac{{{a}^{3\log \left( x+1 \right)}}+2020}{{{x}^{3}}+2020}\), điều kiện: \(x>-1\),
\(\begin{align} & \Leftrightarrow {{x}^{3}}-{{a}^{3\log \left( x+1 \right)}}={{\log }_{2021}}\left( {{a}^{3\log \left( x+1 \right)}}+2020 \right)-{{\log }_{2021}}\left( {{x}^{3}}+2020 \right) \\ & \Leftrightarrow {{x}^{3}}+{{\log }_{2021}}\left( {{x}^{3}}+2020 \right)={{a}^{3\log \left( x+1 \right)}}+{{\log }_{2021}}\left( {{a}^{3\log \left( x+1 \right)}}+2020 \right)\,\,\left( * \right) \\ \end{align} \)
Xét hàm số \(f(t)={{t}^{3}}+{{\log }_{2021}}\left( {{t}^{3}}+2020 \right)\), trên \(\left( 0;+\infty\right)\)
\(f'(t)=3{{t}^{2}}+\frac{3{{t}^{2}}}{\left( {{t}^{3}}+2020 \right)\ln 2021}>0,\forall t>0\) nên hàm số \(f(t)\) đồng biến trên \(\left( 0;+\infty\right)\)
Do đó \(\left( * \right)\) trở thành: \(x={{a}^{\log \left( x+1 \right)}}\)\(\Leftrightarrow x={{\left( x+1 \right)}^{\log a}}\Leftrightarrow \log x=\log a.\log (x+1)\)
\(\Leftrightarrow \log a=\frac{\log x}{\log \left( x+1 \right)}<1,\forall x>-1\) nên \(a<10\Rightarrow a\in \left\{ 1,2,3,4,5,6,7,8,9 \right\}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247