Có bao nhiêu giá trị nguyên của \(m\in \left[ 0;\,2018 \right]\) để bất phương trình: \(m+{{\text{e}}^{\frac{x}{2}}}\ge \sqrt[4]{{{\text{e}}^{2x}}+1}\) đúng với mọi \(x\in \mathbb{...

Câu hỏi :

Có bao nhiêu giá trị nguyên của \(m\in \left[ 0;\,2018 \right]\) để bất phương trình: \(m+{{\text{e}}^{\frac{x}{2}}}\ge \sqrt[4]{{{\text{e}}^{2x}}+1}\) đúng với mọi \(x\in \mathbb{R}\).

A. 2016

B. 2017

C. 2018

D. 2019

* Đáp án

C

* Hướng dẫn giải

TXĐ: \(D=\mathbb{R}\).

BPT \(\Leftrightarrow m\ge \sqrt[4]{{{e}^{2x}}+1}-{{e}^{\frac{x}{2}}}\) đúng với mọi \(x\in \mathbb{R}\).

Đặt \({{e}^{\frac{x}{2}}}=t>0\)Þ \(m\ge \sqrt[4]{{{t}^{4}}+1}-t=f\left( t \right)\) đúng với mọi t>0\(\Leftrightarrow m\ge \underset{\left[ 0;\,+\infty  \right)}{\mathop{max}}\,f\left( t \right)\) \(\left( * \right)\)

Ta có: \({f}'\left( t \right)=\frac{{{t}^{3}}}{\sqrt[4]{{{\left( {{t}^{4}}+1 \right)}^{3}}}}-1\); \({f}'\left( t \right)=0\Leftrightarrow \frac{{{t}^{3}}}{\sqrt[4]{{{\left( {{t}^{4}}+1 \right)}^{3}}}}-1=0\)

\(\Leftrightarrow {{t}^{3}}=\sqrt[4]{{{\left( {{t}^{4}}+1 \right)}^{3}}}\Leftrightarrow {{t}^{12}}={{\left( {{t}^{4}}+1 \right)}^{3}}\Leftrightarrow {{t}^{4}}={{t}^{4}}+1\) (Vô nghiệm)

Mặt khác,\(\underset{t\to {{0}^{+}}}{\mathop{\lim }}\,f\left( t \right)=1\) ; \(\underset{t\to +\infty }{\mathop{\lim }}\,f\left( t \right)=0\).

Bảng biến thiên:

Vậy \(m\ge 1\). Mà \(m\in \mathbb{Z},\,\,m\in \left[ 0;\,2018 \right]\) nên \(m\in \left\{ 1;\,2;\,...;\,2018 \right\}\) \(\Rightarrow \) Có 2018 giá trị thỏa mãn.

Copyright © 2021 HOCTAP247