Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 0;7 \right]\) và có đồ thị hàm số \(y={f}'\left( x \right)\) trên đoạn \(\left[ 0;7 \right]\) như hình vẽ....

Câu hỏi :

Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 0;7 \right]\) và có đồ thị hàm số \(y={f}'\left( x \right)\) trên đoạn \(\left[ 0;7 \right]\) như hình vẽ.

A. \(\frac{{2759}}{{15}}\)

B. \(\frac{{2744}}{{15}}\)

C. \(\frac{{5518}}{{15}}\)

D. \(\frac{{563}}{3}\)

* Đáp án

A

* Hướng dẫn giải

Xét tích phân \(\int\limits_{\frac{1}{2}}^{4}{{g}'\left( x \right)\text{d}x}=g\left( 4 \right)-g\left( \frac{1}{2} \right)=g\left( 4 \right)-f\left( 0 \right)\).

Ta có \({g}'\left( x \right)=2{f}'\left( 2x-1 \right)\) nên \(\int\limits_{\frac{1}{2}}^{4}{{g}'\left( x \right)\text{d}x}=2\int\limits_{\frac{1}{2}}^{4}{{f}'\left( 2x-1 \right)\text{d}x}=\int\limits_{0}^{7}{{f}'\left( t \right)\text{d}t}\).

Dựa vào đồ thị suy ra \(\int\limits_{0}^{7}{{f}'\left( t \right)\text{d}t}={{S}_{1}}-{{S}_{2}}+{{S}_{3}}=\frac{2744}{15}\).

Từ đó ta có \(g\left( 4 \right)=\int\limits_{\frac{1}{2}}^{4}{{g}'\left( x \right)\text{d}x}+f\left( 0 \right)=\frac{2759}{15}\).

Copyright © 2021 HOCTAP247