A. \(\left\{ \begin{array}{l} x = 2 + t\\ y = 0\\ z = 1 + 2t \end{array} \right.\)
B. \(\left\{ \begin{array}{l} x = - 2 + 2t\\ y = t\\ z = - 1 - t \end{array} \right.\)
C. \(\left\{ \begin{array}{l} x = - 2 + 2t\\ y = - 2t\\ z = - 1 - t \end{array} \right.\)
D. \(\left\{ \begin{array}{l} x = - 2 + t\\ y = 0\\ z = - 1 + 2t \end{array} \right.\)
D
Ta có: \(\Delta :\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 2}}{{ - 1}} \Rightarrow \Delta :\left\{ \begin{array}{l} x = 2t\\ y = 1 + t\\ z = - 2 - t \end{array} \right.\)
Gọi \(M=\Delta \cap \left( P \right) \Rightarrow M\in \Delta \Rightarrow M\left( 2t;1+t;-2-t \right)\)
\(M\in \left( P \right)\Rightarrow 4t-2\left( 1+t \right)-\left( -2-t \right)+3=0 \Leftrightarrow 3t+3=0\Leftrightarrow t=-1 \Rightarrow M\left( -2;\,0;\,-1 \right)\)
Véc tơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\overrightarrow{n}=\left( 2;-2;-1 \right)\)
Véc tơ chỉ phương của đường thẳng \(\Delta \) là \(\overrightarrow{u}=\left( 2;1;-1 \right)\)
Đường thẳng d nằm trong mặt phẳng \(\left( P \right)\) đồng thời cắt và vuông góc với \(\Delta \Rightarrow \) Đường thẳng d nhận \(\left[ \overrightarrow{n},\overrightarrow{u} \right]=\left( 3;\,0;\,6 \right)=\frac{1}{3}\left( 1;\,0;\,2 \right)\) làm véc tơ chỉ phương và \(M\left( -2;\,0;\,-1 \right)\in d\)
Vậy phương trình đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + t\\ y = 0\\ z = - 1 + 2t \end{array} \right.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247