Cho A(1;-2;3),B(-1;3;4),C(5;1;-2). Đường trung tuyến AM của tam giác ABC có phương trình là:

Câu hỏi :

Cho A(1;-2;3),B(-1;3;4),C(5;1;-2). Đường trung tuyến AM của tam giác ABC có phương trình là:

A. \(\left\{ {\begin{array}{*{20}{c}} {x = 1 + 2t}\\ {y = - 2 + t}\\ {z = 3 - 6t} \end{array}} \right.{\rm{ }}(t \in R)\)

B. \(\left\{ {\begin{array}{*{20}{c}} {x = 1 + t}\\ {y = - 2 - 4t}\\ {z = 3 - 2t} \end{array}} \right.{\rm{ }}(t \in R)\)

C. \(\left\{ {\begin{array}{*{20}{c}} {x = 1 + t}\\ {y = - 2 + 4t}\\ {z = 3 - 2t} \end{array}} \right.{\rm{ }}(t \in R)\)

D. \(\left\{ {\begin{array}{*{20}{c}} {x = 1 - t}\\ {y = - 2 - 6t}\\ {z = 3 - 2t} \end{array}} \right.{\rm{ }}(t \in R)\)

* Đáp án

C

* Hướng dẫn giải

M là trung điểm BC \(\Rightarrow M\left( 2;2;1 \right) \Rightarrow AM\) có vtcp là \(\overrightarrow{AM}=\left( 1;4;-2 \right)\) và đi qua điểm

\(A\left( {1; - 2;3} \right) \Rightarrow AM:\left\{ {\begin{array}{*{20}{c}} {x = 1 + t}\\ {y = - 2 + 4t}\\ {z = 3 - 2t} \end{array}} \right.{\rm{ }}(t \in R)\)

Copyright © 2021 HOCTAP247