A. \(m = \frac{{4040}}{3}\)
B. \(m = \frac{{4041}}{3}\)
C. \(m = \frac{{2021}}{3}\)
D. \(m = \frac{{2020}}{3}\)
A
\({S_2} = \int\limits_0^m {\left( {{x^2} - mx} \right)dx} = \left. {\left( {\frac{{{x^3}}}{3} - \frac{{m{x^2}}}{2}} \right)} \right|_m^{2020} = \left( {\frac{{{{2020}^3}}}{3} - \frac{{m{{2020}^2}}}{2}} \right) + \frac{{{m^3}}}{6}\)
\({S_1} = - \int\limits_0^m {\left( {{x^2} - mx} \right)dx} = - \left. {\left( {\frac{{{x^3}}}{3} - \frac{{m{x^2}}}{2}} \right)} \right|_0^m = \frac{{{m^3}}}{6}\)
\({S_2} = 2020{S_1} \Leftrightarrow \left( {\frac{{{{2020}^3}}}{3} - \frac{{m{{2020}^2}}}{2}} \right) + \frac{{{m^3}}}{6} = \frac{{{m^3}}}{6}\)
\( \Leftrightarrow \frac{{{{2020}^3}}}{3} - \frac{{m{{2020}^2}}}{2} = 0 \Leftrightarrow m = \frac{{4040}}{3}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247