A. 2
B. 1
C. 3
D. 4
D
Ta có \({g}'\left( x \right)={f}'\left( x \right)-\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\).
Trên mặt phẳng toạ độ đã có đồ thị hàm số \({f}'\left( x \right)\) ta vẽ thêm đồ thị hàm số \(y={{x}^{2}}+\frac{3}{2}x-\frac{3}{2}\).
Dựa vào đồ thị hàm số ta có
Khi \(x\in \left( -3;-1 \right)\) thì \({f}'\left( x \right)<{{x}^{2}}+\frac{3}{2}x-\frac{3}{2}\), khi \(x\in \left( -1;1 \right)\) thì \({f}'\left( x \right)>{{x}^{2}}+\frac{3}{2}x-\frac{3}{2}\).
Do đó ta có bảng biến thiên của hàm số \(y=g\left( x \right)\) trên đoạn \(\left[ -3;1 \right]\) như sau
Dựa vào bảng biến thiên ta có:
Vì trên \(\left[ 0;1 \right]\) hàm số \(g\left( x \right)\) đồng biến nên \(g\left( 0 \right)<g\left( 1 \right)\), do đó (I) đúng.
Từ BBT ta có \(\underset{\left[ -3;1 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)\), do đó (II) đúng.
Từ BBT ta thấy (III) đúng.
\(\underset{\left[ -3;1 \right]}{\mathop{\max }}\,g\left( x \right)=\max \left\{ g\left( -3 \right);g\left( 1 \right) \right\}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247