Cho khối chóp tứ giác đều S.ABCD có thể tích bằng \({{a}^{3}}\) và đáy ABCD là hình vuông cạnh a. Tính \(cos\alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy

Câu hỏi :

Cho khối chóp tứ giác đều  S.ABCD có thể tích bằng \({{a}^{3}}\) và đáy ABCD là hình vuông cạnh a. Tính \(cos\alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy

A. \(cos\alpha  = \frac{1}{{\sqrt 5 }}\)

B. \(cos\alpha  = \frac{1}{{\sqrt 3 }}\)

C. \(cos\alpha  = \frac{1}{{\sqrt {37} }}\)

D. \(cos\alpha  = \frac{1}{{\sqrt {19} }}\)

* Đáp án

C

* Hướng dẫn giải

Gọi O là tâm của hình vuông ABCD, I là trung điểm của BC.

Ta có: \({V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{a^2}.SO = {a^3} \Rightarrow SO = 3a\)

Do \(\left\{ {\begin{array}{*{20}{c}} {OI \bot BC}\\ {SI \bot BC} \end{array} \Rightarrow BC \bot \left( {SOI} \right)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{c}} {\left( {SBC} \right) \cap \left( {ABCD} \right) = BC}\\ {BC \bot \left( {SOI} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\ {\left( {SOI} \right) \cap \left( {SBC} \right) = SI\,\,\,\,\,\,}\\ {\left( {SOI} \right) \cap \left( {ABCD} \right) = OI} \end{array}} \right.\)

\( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = \angle \left( {OI;SI} \right) = \angle SIO\)

\( \Rightarrow cos\left( {\left( {SBC} \right);\left( {ABCD} \right)} \right) = cos\angle SIO = \frac{{OI}}{{SI}} = \frac{{OI}}{{\sqrt {O{I^2} + S{O^2}} }} = \frac{{\frac{a}{2}}}{{\sqrt {\frac{{{a^2}}}{4} + 9{a^2}} }} = \frac{{\frac{a}{2}}}{{\frac{{a\sqrt {37} }}{2}}} = \frac{1}{{\sqrt {37} }}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Xuân Mai

Số câu hỏi: 50

Copyright © 2021 HOCTAP247