A. -2
B. -7
C. 7
D. 2
D
Ta có \(I=\int\limits_{-\frac{\pi }{2}}^{\frac{\pi }{2}}{f(x)dx}=\int\limits_{-\frac{\pi }{2}}^{0}{f(x)dx+\int\limits_{0}^{\frac{\pi }{2}}{f(x)dx}}\)
Tính \({{I}_{1}}=\int\limits_{-\frac{\pi }{2}}^{0}{f(x)dx}\). Đặt \(x=-t\Rightarrow dx=-dt\) ⇒ \({{I}_{1}}=\int\limits_{0}^{\frac{\pi }{2}}{f(-t)dt=\int\limits_{0}^{\frac{\pi }{2}}{f(-x)dx}}\).
Thay vào, ta được \(I=\int\limits_{0}^{\frac{\pi }{2}}{\left[ f(-x)+f(x) \right]dx=\int\limits_{0}^{\frac{\pi }{2}}{\sqrt{2\left( 1+\cos 2x \right)}=2\int\limits_{0}^{\frac{\pi }{2}}{\left| \cos x \right|dx}}}=2\int\limits_{0}^{\frac{\pi }{2}}{\cos xdx}=2\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247