A. 90
B. 6642
C. \(\frac{{82}}{{6561}}\)
D. 20
B
Điều kiện: x>0.
Ta có phương trình tương đương \({{2}^{2{{\log }_{9}}x}}-{{6.2}^{{{\log }_{9}}x}}+{{2}^{3}}=0.\text{ (1)}\)
Đặt \(t={{2}^{{{\log }_{9}}x}},t>0. \left( 1 \right)\Rightarrow {{t}^{2}}-6t+8=0\Leftrightarrow \left[ \begin{align} & t=2 \\ & t=4 \\ \end{align} \right.\)
- Với \(t=2\Leftrightarrow {{2}^{{{\log }_{9}}x}}=2\Leftrightarrow {{\log }_{9}}x=1\Leftrightarrow x=9.\)
- Với \(t=4\Leftrightarrow {{2}^{{{\log }_{9}}x}}={{2}^{2}}\Leftrightarrow {{\log }_{9}}x=2\Leftrightarrow x=81\).
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{ 9;81 \right\}\Rightarrow x_{1}^{2}+x_{2}^{2}=6642\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247