Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Dương Văn Thì Bất phương trình \(\sqrt{2{{x}^{3}}+3{{x}^{2}}+6x+16}-\sqrt{4-x}\ge 2\sqrt{3}\) có tập nghiệm là \(\left[...

Bất phương trình \(\sqrt{2{{x}^{3}}+3{{x}^{2}}+6x+16}-\sqrt{4-x}\ge 2\sqrt{3}\) có tập nghiệm là \(\left[ a;b \right]\). Hỏi tổng a+b có giá trị là bao nhiêu?

Câu hỏi :

Bất phương trình \(\sqrt{2{{x}^{3}}+3{{x}^{2}}+6x+16}-\sqrt{4-x}\ge 2\sqrt{3}\) có tập nghiệm là \(\left[ a;b \right]\). Hỏi tổng a+b có giá trị là bao nhiêu?

A. 4

B. 5

C. 3

D. -2

* Đáp án

B

* Hướng dẫn giải

Điều kiện: \(-2\le x\le 4\). Xét \(f(x)=\sqrt{2{{x}^{3}}+3{{x}^{2}}+6x+16}-\sqrt{4-x}\) trên đoạn \(\left[ -2;4 \right]\).

Có \({f}'(x)=\frac{3\left( {{x}^{2}}+x+1 \right)}{\sqrt{2{{x}^{3}}+3{{x}^{2}}+6x+16}}+\frac{1}{2\sqrt{4-x}}>0,\forall x\in \left( -2;4 \right)\).

Do đó hàm số đồng biến trên \(\left[ -2;4 \right]$, bpt \(\Leftrightarrow f(x)\ge f(1)=2\sqrt{3}\Leftrightarrow x\ge 1\).

So với điều kiện, tập nghiệm của bpt là \(S=\text{ }\!\![\!\!\text{ }1;4]\Rightarrow a+b=5.\)

Copyright © 2021 HOCTAP247