Cho hình chóp S.ABC có đáy $ABC$ là tg đều cạnh $a,$

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng \(\left( SBC \right)\) bằng \({{45}^{0}}\) (tham khảo hình bên). Thể tích của khối chóp S.ABC bằng

A. \(\frac{{{a^3}}}{8}.\)

B. \(\frac{{3{a^3}}}{8}.\)

C. \(\frac{{\sqrt 3 {a^3}}}{{12}}.\)

D. \(\frac{{{a^3}}}{4}.\)

* Đáp án

A

* Hướng dẫn giải

Gọi M là trung điểm BC, trong \(\left( SAM \right)\) kẻ \(AH\bot SM\left( H\in SM \right)\) ta có:

\(\left\{ \begin{align} & BC\bot AM \\ & BC\bot SA \\ \end{align} \right.\Rightarrow BC\bot \left( SAM \right)\Rightarrow BC\bot AH\)

\(\left\{ \begin{align} & AH\bot BC\left( cmt \right) \\ & AH\bot SM \\ \end{align} \right.\Rightarrow AH\bot \left( SBC \right)\)

\(\Rightarrow SH$ là hình chiếu vuông góc của SA lên \(\left( SBC \right)\)

\(\Rightarrow \angle \left( SA;\left( SBC \right) \right)=\angle \left( SA;SH \right)\Leftrightarrow ASH=\angle ASM={{45}^{0}}\Rightarrow \Delta SAM\) vuông cân tại A.

Vì ABC là tam giác đều cạnh a nên \(AM=\frac{a\sqrt{3}}{2}\Rightarrow SA=AM=\frac{a\sqrt{3}}{2}\) và \({{S}_{\Delta ABC}}=\frac{{{a}^{2}}\sqrt{3}}{4}.\)

Vậy \({{V}_{S.ABC}}=\frac{1}{3}SA.{{S}_{\Delta ABC}}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{{{a}^{3}}}{8}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phú Bài

Số câu hỏi: 50

Copyright © 2021 HOCTAP247