Cho hs \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1{\rm{ }}\\{x^2} - 2x + 3\end{array} \right.

Câu hỏi :

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} {x^2} - 1{\rm{ }}\\ {x^2} - 2x + 3 \end{array} \right.\)  \(\begin{array}{l} {\rm{khi }}x \ge {\rm{2}}\\ {\rm{khi }}x < {\rm{2}} \end{array}\). Tích phân \(\int\limits_0^{\frac{\pi }{2}} {f\left( {2\sin x + 1} \right)\cos xdx} \) bằng

A. \(\frac{{23}}{3}.\)

B. \(\frac{{23}}{6}.\)

C. \(\frac{{17}}{6}.\)

D. \(\frac{{17}}{3}.\)

* Đáp án

B

* Hướng dẫn giải

Xét \(I=\int\limits_{0}^{\frac{\pi }{2}}{f\left( 2\sin x+1 \right)\text{cosxdx}}.\)

Đặt \(t=2\operatorname{s}\text{inx+1}\) ta có \(dt=2\cos xdx.\)

Đổi cận: \(\left\{ \begin{align} & x=0\Rightarrow t=1 \\ & x=\frac{\pi }{2}\Rightarrow t=3 \\ \end{align} \right..\) Khi đó ta có:

\(I=\frac{1}{2}\int\limits_{1}^{3}{f\left( t \right)dt=\frac{1}{2}}\int\limits_{1}^{3}{f\left( x \right)dx}\)

\(=\frac{1}{2}\left( \int\limits_{1}^{2}{f\left( x \right)dx+\int\limits_{2}^{3}{f\left( x \right)dx}} \right)\)

\(=\frac{1}{2}\left( \int\limits_{1}^{2}{\left( {{x}^{2}}-2x+3 \right)dx+\int\limits_{2}^{3}{\left( {{x}^{2}}-1 \right)dx}} \right)\)

\(=\frac{1}{2}\left( \frac{7}{3}+\frac{16}{3} \right)=\frac{23}{6}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phú Bài

Số câu hỏi: 50

Copyright © 2021 HOCTAP247