Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=AD=2 và \(AA'=2\sqrt{2}\) (tham thảo hình bên). Góc giữa đường thẳng CA' và mặt phẳng \(\left( ABCD \right)\) bằng

Câu hỏi :

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=AD=2 và \(AA'=2\sqrt{2}\) (tham thảo hình bên). Góc giữa đường thẳng CA' và mặt phẳng \(\left( ABCD \right)\) bằng

A. 30o

B. 45o

C. 60o

D. 90o

* Đáp án

B

* Hướng dẫn giải

Vì \(\text{AA}'\bot \left( ABCD \right)\) nên CA là hình chiếu vuông góc của CA' lên \(\left( ABCD \right).\)

\(\Rightarrow \angle \left( CA';\left( ABCD \right) \right)=\angle \left( CA';CA \right)=\angle A'CA.\)

Áp dụng định lí Pytago trong tam giác vuông ABC ta có:

\(AC=\sqrt{A{{B}^{2}}+A{{D}^{2}}}=2\sqrt{2}\text{=AA}'\Rightarrow \Delta \text{AA }\!\!'\!\!\text{ C}\) vuông cân tại \(\Rightarrow \angle \text{ACA}'={{45}^{0}}.\)

Vậy \(\angle \left( CA';\left( ABCD \right) \right)={{45}^{0}}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phú Bài

Số câu hỏi: 50

Copyright © 2021 HOCTAP247