A. \(\left\{ {\begin{array}{*{20}{l}} {x = - 1 + t}\\ {y = - 4t}\\ {z = - 3t} \end{array}} \right..\)
B. \(\left\{ {\begin{array}{*{20}{l}} {x = 3 + t}\\ {y = - 2 + 4t}\\ {z = 2 + t} \end{array}} \right..\)
C. \(\left\{ {\begin{array}{*{20}{l}} {x = 3 + t}\\ {y = - 2 - 4t}\\ {z = 2 - 3t} \end{array}} \right..\)
D. \(\left\{ {\begin{array}{*{20}{l}} {x = 3 + 2t}\\ {y = - 2 + 6t}\\ {z = 2 + t} \end{array}} \right..\)
C
Gọi d nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với \(\Delta \)
\(M=\Delta \cap d\), mà d nằm trong mặt phẳng (P) nên \(M=\Delta \cap \left( P \right)\).
\(M\in \Delta \Rightarrow M\left( -1+2t;-t;-2+2t \right)\)
\(M\in \left( P \right)\Rightarrow -1+2t+\left( -t \right)-\left( -2+2t \right)+1=0\Rightarrow t=2\Rightarrow M\left( 3;-2;2 \right)\).
d có VTCP \(\overrightarrow{a}=\left[ \overrightarrow{{{n}_{P}}},{{\overrightarrow{a}}_{\Delta }} \right]=\left( 1;-4;-3 \right)$ và đi qua \(M\left( 3;-2;2 \right)\) nên có phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}} {x = 3 + t}\\ {y = - 2 - 4t}\\ {z = 2 - 3t} \end{array}} \right..\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247