Trong không gian với hệ tọa độ Oxyz,cho đường thẳng điểm \(I\left( -1;-1;-1 \right)\) và mặt phẳng \(\left( P \right):2x-y+2z=0\). Viết phương trình mặt cầu \(\left( S \right)\) tâ...

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng điểm \(I\left( -1;-1;-1 \right)\) và mặt phẳng \(\left( P \right):2x-y+2z=0\). Viết phương trình mặt cầu \(\left( S \right)\) tâm I và tiếp xúc với \(\left( P \right)\)

A. \(\left( S \right):\,{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 1.\)

B. \(\left( S \right):\,{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = \frac{9}{7}.\)

C. \(\left( S \right):\,{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = \frac{7}{9}.\)

D. \(\left( S \right):\,{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 3.\)

* Đáp án

A

* Hướng dẫn giải

Mặt cầu (S) tiếp xúc với (P) thì khoảng cách tâm I tới (P) bằng bán kính R của (S)

\({d_{\left( {I/P} \right)}} = \frac{{\left| {2.\left( { - 1} \right) - \left( { - 1} \right) + 2.\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = 1 \Rightarrow PT\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 1\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Duy Tân

Số câu hỏi: 50

Copyright © 2021 HOCTAP247