Cho số phức z thỏa mãn \(\left( 2-z \right)\left( \overline{z}+i \right)\) là số thuần ảo. Tập hợp điểm biểu diễn số phức z là đường nào sau đây:

Câu hỏi :

Cho số phức z thỏa mãn \(\left( 2-z \right)\left( \overline{z}+i \right)\) là số thuần ảo. Tập hợp điểm biểu diễn số phức z là đường nào sau đây:

A. \({\left( {x - 1} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = \frac{5}{4}.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{5}{4}.\)

C. \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - 1} \right)^2} = \frac{5}{4}.\)

D. \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - 1} \right)^2} = \frac{7}{4}.\)

* Đáp án

A

* Hướng dẫn giải

Gọi điểm biểu diễn của số phức z = x + yi là M(x;y)

\(\left( {2 - z} \right)\left( {\overline z  + i} \right) = \left( {2 - x - yi} \right)\left( {x - yi + i} \right) = (2x - {x^2} - {y^2} + y) - i(x + 2y - 2)\)

\(\left( {2 - z} \right)\left( {\overline z  + i} \right)\) là số thuần ảo khi và chỉ khi \(2x - {x^2} - {y^2} + y = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = \frac{5}{4}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Duy Tân

Số câu hỏi: 50

Copyright © 2021 HOCTAP247