Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):2x-y+z+2=0\) và \(\left( Q \right):x+y+2z-1=0\). Tính góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Câu hỏi :

Trong không gian Oxyz, cho 2 mặt phẳng \(\left( P \right):2x-y+z+2=0\) và \(\left( Q \right):x+y+2z-1=0\). Tính góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

A. 30o

B. 60o

C. 90o

D. 45o

* Đáp án

B

* Hướng dẫn giải

Mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) lần lượt có véc-tơ pháp tuyến là \(\overrightarrow{{{n}_{1}}}=\left( 2;-1;1 \right)\) và \(\overrightarrow{{{n}_{2}}}=\left( 1;1;2 \right)\).

Ta có \(\cos \left( \left( P \right),\left( Q \right) \right)=\frac{\left| \overrightarrow{{{n}_{1}}}.\overrightarrow{{{n}_{2}}} \right|}{\left| \overrightarrow{{{n}_{1}}} \right|.\left| \overrightarrow{{{n}_{2}}} \right|}=\frac{1}{2}\) .

Vậy góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) là \(60{}^\circ \).

Copyright © 2021 HOCTAP247