Có bao nhiêu số nguyên m để hàm số \(y = - \frac{2}{3}{x^3} + \left( {m - 1} \right){x^2} - 8x + 4\) nghịch biến trên tập xác định ?

Câu hỏi :

Có bao nhiêu số nguyên m để hàm số \(y =  - \frac{2}{3}{x^3} + \left( {m - 1} \right){x^2} - 8x + 4\) nghịch biến trên tập xác định ?

A. 8

B. 9

C. 7

D. 10

* Đáp án

B

* Hướng dẫn giải

Ta có \(y=-\frac{2}{3}{{x}^{3}}+\left( m-1 \right){{x}^{2}}-8x+4\Rightarrow y'=-2{{x}^{2}}+2\left( m-1 \right)x-8\).

Hàm số nghịch biến trên tập xác định \(D=\mathbb{R}\Leftrightarrow y'\le 0,\forall x\in \mathbb{R}\Leftrightarrow \Delta '={{\left( m-1 \right)}^{2}}-16\le 0\Leftrightarrow -3\le m\le 5\). 

Do đó có 9 số nguyên m

Copyright © 2021 HOCTAP247