Cho khối chóp S.ABC có \(SA\,\bot \,\,\left( ABC \right)\), tam giác ABC vuông tại B, \(AC=\,2a, BC=a,SB=2a\sqrt{3}\). Tính góc giữa SA và mặt phẳng \(\,\left( SBC \right)\).

Câu hỏi :

Cho khối chóp S.ABC có \(SA\,\bot \,\,\left( ABC \right)\), tam giác ABC vuông tại B, \(AC=\,2a, BC=a,SB=2a\sqrt{3}\). Tính góc giữa SA và mặt phẳng \(\,\left( SBC \right)\). 

A. 45o

B. 30o

C. 60o

D. 90o

* Đáp án

B

* Hướng dẫn giải

Kẻ \(AH\bot \,SB\,\) (\(H\in SB\)) (1). Theo giả thiết ta có \(\left\{ \begin{align} & BC\bot \,SA \\ & BC\bot \,AB \\ \end{align} \right.\)

\(\Rightarrow \,BC\bot \,\left( SAB \right)\Rightarrow \,BC\bot \,AH\,\)(2) .

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra, \(AH\bot \,\left( SBC \right)\). Do đó góc giữa SA và mặt phẳng \(\,\left( SBC \right)\) bằng góc giữa SA và SH bằng góc \(\widehat{ASH}\)

Ta có \(AB=\,\sqrt{A{{C}^{2}}-B{{C}^{2}}}=\,\,a\sqrt{3}\). Trong vuông \(\Delta SAB\) ta có \(\sin ASB=\,\frac{AB}{SB}=\,\frac{a\sqrt{3}}{2a\sqrt{3}}=\,\frac{1}{2}\). Vậy \(\widehat{ASB}=\widehat{ASH}={{30}^{\circ }}\,\).

Do đó góc giữa SA và mặt phẳng \(\,\left( SBC \right)\) bằng \(30{}^\circ \).

Copyright © 2021 HOCTAP247