A. 45o
B. 30o
C. 60o
D. 90o
B
Kẻ \(AH\bot \,SB\,\) (\(H\in SB\)) (1). Theo giả thiết ta có \(\left\{ \begin{align} & BC\bot \,SA \\ & BC\bot \,AB \\ \end{align} \right.\)
\(\Rightarrow \,BC\bot \,\left( SAB \right)\Rightarrow \,BC\bot \,AH\,\)(2) .
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra, \(AH\bot \,\left( SBC \right)\). Do đó góc giữa SA và mặt phẳng \(\,\left( SBC \right)\) bằng góc giữa SA và SH bằng góc \(\widehat{ASH}\)
Ta có \(AB=\,\sqrt{A{{C}^{2}}-B{{C}^{2}}}=\,\,a\sqrt{3}\). Trong vuông \(\Delta SAB\) ta có \(\sin ASB=\,\frac{AB}{SB}=\,\frac{a\sqrt{3}}{2a\sqrt{3}}=\,\frac{1}{2}\). Vậy \(\widehat{ASB}=\widehat{ASH}={{30}^{\circ }}\,\).
Do đó góc giữa SA và mặt phẳng \(\,\left( SBC \right)\) bằng \(30{}^\circ \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247