Trong không gian Oxyz cho điểm M(1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\l...

Câu hỏi :

Trong không gian Oxyz cho điểm M(1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) thỏa mãn OA = 2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S = 2a + b + 3c.

A. \(\frac{{81}}{{16}}\)

B. 3

C. \(\frac{{45}}{{2}}\)

D. \(\frac{{81}}{{4}}\)

* Đáp án

D

* Hướng dẫn giải

Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) có dạng \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1.\)

Vì \(\left( P \right)\) đi qua M nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1.\)

Mặt khác OA=2OB nên a=2b nên \(\frac{3}{2b}+\frac{1}{c}=1.\)

Thể tích khối tứ diện OABC là \(V=\frac{1}{6}abc=\frac{1}{3}{{b}^{2}}c.\)

Ta có \(\frac{3}{2b}+\frac{1}{c}=\frac{3}{4b}+\frac{3}{4b}+\frac{1}{c}\ge 3\sqrt[3]{\frac{9}{16{{b}^{2}}c}}\Rightarrow \sqrt[3]{\frac{9}{16{{b}^{2}}c}}\le \frac{1}{3}\Rightarrow \frac{16{{b}^{2}}c}{9}\ge 27\Rightarrow V=\frac{{{b}^{2}}c}{3}\ge \frac{81}{16}.\)

\(\Rightarrow \min V=\frac{81}{16}\) khi \(\left\{ \begin{align} & \frac{3}{4b}=\frac{1}{c}=\frac{1}{3} \\ & a=2b \\ \end{align} \right.\)

\(\Rightarrow \left\{ \begin{align} & a=\frac{9}{2} \\ & b=\frac{9}{4} \\ & c=3 \\ \end{align} \right..\)

Vậy \(S=2a+b+3c=\frac{81}{4}.\)

Copyright © 2021 HOCTAP247