A. x = 1
B. x = -1
C. y = -1
D. y = 1
B
\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{x - 1}}{{x + 1}} = - \infty \) vì \(\left\{ \begin{array}{l} \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \left( {x - 1} \right) = - 2 < 0\\ \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \left( {x + 1} \right) = 0\\ x + 1 > 0\,\,khi\,\,x > - 1 \end{array} \right.\)
\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{x - 1}}{{x + 1}} = + \infty \) vì \(\left\{ \begin{array}{l} \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \left( {x - 1} \right) = - 2 < 0\\ \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \left( {x + 1} \right) = 0\\ x + 1 < 0\,\,khi\,\,x < - 1 \end{array} \right.\)
Vậy đồ thị hàm số có đường tiệm cận đứng là x = -1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247