Cho hàm số f(x) liên tục trên R và có \(\int\limits_0^2 {f\left( x \right)} {\rm{d}}x = 9;\int\limits_2^4 {f\left( x \right)} {\rm{d}}x = 4\). Tính \(I = \int\limits_0^4 {f\left( x...

Câu hỏi :

Cho hàm số f(x) liên tục trên R và có \(\int\limits_0^2 {f\left( x \right)} {\rm{d}}x = 9;\int\limits_2^4 {f\left( x \right)} {\rm{d}}x = 4\). Tính \(I = \int\limits_0^4 {f\left( x \right)} {\rm{d}}x\)?

A. \(I = \frac{9}{4}\)

B. I = 36

C. I = 13

D. I = 5

* Đáp án

C

* Hướng dẫn giải

\(\int\limits_0^4 {f\left( x \right){\rm{d}}x} = \int\limits_0^2 {f\left( x \right)} {\rm{d}}x + \int\limits_2^4 {f\left( x \right)} {\rm{d}}x = 9 + 4 = 13\)

Copyright © 2021 HOCTAP247