Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = {x^3} - \left( {m + 1} \right){x^2} + 3x + 1\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)?\)

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = {x^3} - \left( {m + 1} \right){x^2} + 3x + 1\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)?\)

A. 6

B. 8

C. 7

D. 5

* Đáp án

C

* Hướng dẫn giải

Ta có \(y' = 3{x^2} - 2\left( {m + 1} \right)x + 3.\)

Hàm số đã cho đồng biến trên \(\left( { - \infty ; + \infty } \right)\) khi và chỉ khi \(\Delta ' = {\left( {m + 1} \right)^2} - 9 \le 0 \Leftrightarrow  - 4 \le m \le 2.\)

Vậy các giá trị nguyên của m thỏa yêu cầu bài toán là -4, -3, -2, -1, 0, 1, 2, tức là có 7 giá trị.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nam Việt

Số câu hỏi: 46

Copyright © 2021 HOCTAP247