Hướng dẫn giải
Ta có B = \(\mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{4 - (x + 1)}}{{(x - 3)\left( {2 + \sqrt {x + 1} } \right)}}\)
\[ = \mathop {\lim }\limits_{x \to 3} \frac{{3 - x}}{{(x - 3)\left( {2 + \sqrt {x + 1} } \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{2 + \sqrt {x + 1} }} = \frac{{ - 1}}{{2 + \sqrt {3 + 1} }} = \frac{{ - 1}}{4}.\]
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247