B = lim x đến 3 2 - căn bậc hai của x + 1/x - 3

Câu hỏi :

B = \(\mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}}\).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Ta có B = \(\mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{4 - (x + 1)}}{{(x - 3)\left( {2 + \sqrt {x + 1} } \right)}}\)

\[ = \mathop {\lim }\limits_{x \to 3} \frac{{3 - x}}{{(x - 3)\left( {2 + \sqrt {x + 1} } \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{2 + \sqrt {x + 1} }} = \frac{{ - 1}}{{2 + \sqrt {3 + 1} }} = \frac{{ - 1}}{4}.\]

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi Toán 11 Học kì 2 có đáp án !!

Số câu hỏi: 219

Copyright © 2021 HOCTAP247