Tổng S = 1 + 1/2+ 1/4+ … + 1/2^n+ … có giá trị là A. S = 3/4 B. S = 3/2 C. S = 3 D. S = 2

Câu hỏi :

Tổng S = 1 + \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ … + \(\frac{1}{{{2^n}}}\)+ … có giá trị là

A. S = \(\frac{3}{4}\)

B. S = \(\frac{3}{2}\)

C. S = 3

D. S = 2

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có S = 1 + \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ … + \(\frac{1}{{{2^n}}}\)+ …

Þ Sn = \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ … + \(\frac{1}{{{2^n}}}\)+ Þ S = 1 + Sn

Tổng của cấp số nhân lùi vô hạn có công thức Sn = \(\frac{{{u_1}}}{{1 - q}}\)

Theo đề bài ta có u1 = \(\frac{1}{2}\), q = \(\frac{1}{2}\) Þ Sn = 1

Vậy S = 1 + 1 = 2.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi Toán 11 Học kì 2 có đáp án !!

Số câu hỏi: 219

Copyright © 2021 HOCTAP247