Hướng dẫn giải
Đáp án đúng là: A
Ta có: f(2) = m
\[\begin{array}{l}\mathop {\lim }\limits_{x \to 2} f(x) = \mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {4x + 1} }}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{9 - (4x + 1)}}{{(x - 2)\left( {3 + \sqrt {4x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{ - 4(x - 2)}}{{(x - 2)\left( {3 + \sqrt {4x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{ - 4}}{{\left( {3 + \sqrt {4x + 1} } \right)}} = \frac{{ - 2}}{3}\end{array}\]
Để hàm số liên tục tại x = 2 thì f(2) = \(\mathop {\lim }\limits_{x \to 2} f(x)\) Û m = \( - \frac{2}{3}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247