Huớng dẫn giải
∙ y = f(x4) Þ y' = (4x3).f '(x4)
Þ K1 = y'(1) = 4.f '(1).
∙ y = x2.f(2x2 – 1) Þ y' = 2x.f(2x2 – 1) + 4x3.f '(2x2 – 1).
Þ K2 = y'(1) = 2f(1) + 4f '(1).
Theo đề bài ta có 2 tiếp tuyến vuông góc với nhau nên K1.K2 = −1
Û 4. f '(1).[2f(1) + 4f '(1)] = −1.
Đặt t = f'(1) Þ f(1) = \( - \frac{1}{{8t}} - 2t\)
Þ |f(1)| ≥ \(2\sqrt {\frac{1}{{8t}}.2t} = 1\)
Þ \(\left[ {\begin{array}{*{20}{c}}{f(1) \le - 1}\\{f(1) \ge 1}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{2f(1) - 1 \le - 3}\\{2f(1) - 1 \ge 1}\end{array}} \right.\)
Þ |2f(1) – 1| ≥ 1 Þ (2f(1) – 1)2 ≥ 1.
Khi đó: T = [2f(1) – 1]2 – 6 ≥ 1 – 6 = −5.
Vậy MinT = −5 khi f(1) = 1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247